SO0001

LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

1-ON-1 (ISO 21254-1) TEST PROCEDURE SAMPLE: SAMPLE

Request from	
Address	Company Address Line 1 Address Line 2 Country
Contact person Inquiry ID Purchase order	Name Surname Inquiry ID: 0001
Testing institute	
Address ester Test date Sale order Test ID	UAB Lidaris Saulėtekio al. 10 10223 Vilnius Lithuania Name Surname 01/01/2025 SO0001 -
Specimen	
Name Type Dimensions Packaging	Sample AR Coating Ø25.4 x 3.0 mm Plastic box

TEST EQUIPMENT

Test setup Variable Focusing Sample Laser Controlled Waveplate Shutter system attenuator system positioning environment Damage detection Beam diagnostics

Laser and its parameters

Type Manufacturer Model Central wavelength Angle of incidence Polarization state Pulse repetition frequency	Q-switched, seeded Nd:YAG InnoLas Laser II SpitLight Hybrid 532.0 nm 45.0 deg Linear 100 Hz
Spatial beam profile in target plane	TEM00
Longitudinal pulse profile Pulse duration (FWHM) Pulse to pulse energy stability (SD)	$(216.8 \pm 2.8) \mu\text{m}$ Single longitudinal mode $(5.8 \pm 0.3) \text{ns}$ 2.6 %

Energy/power meter

Model

Figure 1. Laser parameters used for measurements.

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero.

LID of the sample is investigated by performing a standardized 1-on-1 test procedure.² LIDT value is determined by fitting experimental damage probability data with a model derived for a Poisson damage process assuming degenerate defect ensemble. ³

l est sites	
Number of sites	219
Arrangement of sites	Hexagonal
Minimum distance between sites	900 µm
Maximum pulses per site	1
Analysis information	
Online detection	Scattered light diode
Offline detection	Nomarski microscope
Software version	9418cf45
Test environment	
Environment	Air
Cleanroom class (ISO 14644-1)	ISO7
Pressure	1 bar
Temperature	21.9 C
Humidity	53.9 %
Sample preparation	
Storage before test	Normal laboratory conditions
Dust blow-off	Compressed air
Cleaning	None

¹ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011)

²ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)

³J. Porteus and S. Seitel, Absolute onset of optical surface damage using distributed defect ensembles, Applied Optics, 23(21), 3796–3805 (1984)

LIDT TEST RESULTS

LIDT VALUES

Table 1: Estimated LIDTs from fiting model for sample Sample.

Test mode	Threshold (Offline detection - microscopy)
1-on-1	10.88 ^{+0.99} _{-1.12} J/cm ²

DAMAGE PROBABILITY

(a) 1-on-1

Figure 2. Damage probability plot.

TYPICAL DAMAGE MORPHOLOGY

Figure 3. Typical damage morphology: fluence 12.5 J/cm², damage after 1 pulse(s). High contrast image.

Figure 4. Typical damage morphology: fluence 17.9 J/cm², damage after 1 pulse(s).

before test	after exposure
	250 µm

Figure 6. Typical damage morphology: fluence 26.1 J/cm², damage after 1 pulse(s).

TECHNICAL NOTES

TECHNICAL NOTE 1: Oblique incidence

According to the ISO 21254-2:2011 standard, for spatial beam profiling perpendicular to the direction of beam propagation and angles of incidence differing from 0 degrees, the cosine of the angle of incidence is included in the calculation of the effective area, which leads to correct evaluation of laser fluence at different angles of incidence (Figure 7).

TECHNICAL NOTE 2: Rear surface damage

Rear surface damage was observed exposing with more than 16 J/cm² fluence laser radiation.

HOW CAN I ORDER?

LIDARIS LIDT Service