

LASER-INDUCED DAMAGE THRESHOLD (LIDT) MEASUREMENT REPORT

S-ON-1 (ISO 21254-2) TEST PROCEDURE

SAMPLE: SAMPLE

Request f	rom
-----------	-----

Address Company

Address Line 1 Address Line 2 Country

Contact person Name Surname Inquiry ID: 0001

Purchase order

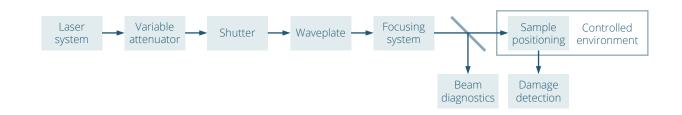
Testing institute

Address UAB Lidaris

Saulėtekio al. 10 10223 Vilnius Lithuania Name Surname

Tester Name Surname
Test date 01/01/2021
Sale order SO0001
Test ID -

Specimen


Name Sample

Type AR Coating (1064nm)
Dimensions Ø25.4 x 3.0 mm
Packaging Plastic box

TEST EQUIPMENT

Test setup

Laser and its parameters

Type Q-switched, seeded Nd:YAG

Manufacturer InnoLas Laser Model SpitLight Hybrid

Central wavelength 1064.0 nm
Angle of incidence 0.0 deg

Angle of incidence 0.0 de Polarization state Linear Pulse repetition frequency 20 Hz

Spatial beam profile in target plane TEM00

Beam diameter in target plane (1/e²) (245.8 \pm 2.5) μ m Longitudinal pulse profile Single longitudinal mode

Pulse duration (FWHM) (9.9 \pm 0.5) ns

Pulse to pulse energy stability (SD) 1.4 %

Energy/power meter

Manufacturer Ophir
Model PE50-DIF-C
Calibration due date 2020-07-01

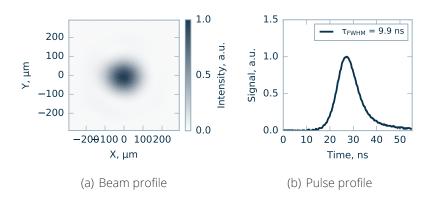


Figure 1. Laser parameters used for measurements.

– Sample Page 2 / 7

TEST SPECIFICATION

Definitions and test description

Laser-induced damage (LID) is defined as any permanent laser radiation induced change in the characteristics of the surface/bulk of the specimen which can be observed by an inspection technique and at a sensitivity related to the intended operation of the product concerned. Laser-induced damage threshold (LIDT) is defined as the highest quantity of laser radiation incident upon the optical component for which the extrapolated probability of damage is zero.

LID of the sample is investigated by performing a standardized S-on-1 test procedure.² LIDT value is determined by fitting experimental damage probability data with a model derived for a Poisson damage process assuming degenerate defect ensemble.³

Test sites	
Number of sites	420
Arrangement of sites	Hexagonal
Minimum distance between sites	900 μm
Maximum pulses per site	1000
Analysis information	
Online detection	Scattered light diode
Offline detection	Nomarski microscope
Software version	75dc5d14
Test environment	
Environment	Air
Cleanroom class (ISO 14644-1)	ISO7
Pressure	1 bar
Temperature	25.4 - 26.0 C
Humidity	28.4 - 31.8 %
Sample preparation	
Storage before test	Normal laboratory conditions
Dust blow-off	None
Cleaning	Isopropanol

¹ISO 21254-1:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 1: Definitions and general principles, International Organization for Standardization, Geneva, Switzerland (2011)

– Sample Page 3 / 7

²ISO 21254-2:2011: Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination, International Organization for Standardization, Geneva, Switzerland (2011)

³J. Porteus and S. Seitel, Absolute onset of optical surface damage using distributed defect ensembles, Applied Optics, 23(21), 3796–3805 (1984)

LIDT TEST RESULTS

LIDT VALUE

10 ³ -on-1	10.91 ^{+0.77} _{-1.15} J/cm ²
-----------------------	---

CHARACTERISTIC DAMAGE CURVE

Table 1: Estimated LIDTs from fiting model for sample Sample.

Test mode	Threshold (Offline detection - microscopy)	Threshold (Online detection - scattering)
1-on-1	21.73 ^{+1.65} _{-2.73} J/cm ²	22.46 ^{+1.02} _{-3.07} J/cm ²
10-on-1	-	14.67 ^{+1.11} _{-1.62} J/cm ²
10 ² -on-1	-	11.51 ^{+0.36} _{-1.27} J/cm ²
10 ³ -on-1	10.91 ^{+0.77} _{-1.15} J/cm ²	11.51 ^{+0.36} _{-1.33} J/cm ²

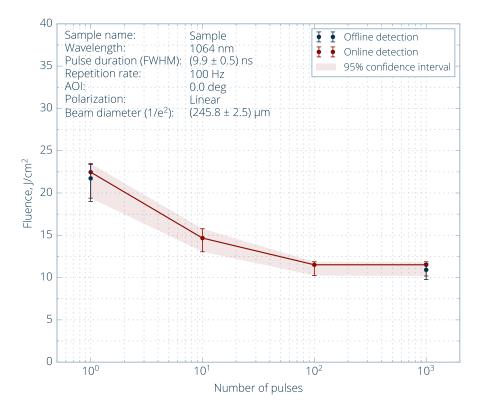


Figure 2. Characteristic damage curve.

– Sample Page 4 / 7

DAMAGE PROBABILITY (OFFLINE DETECTION)

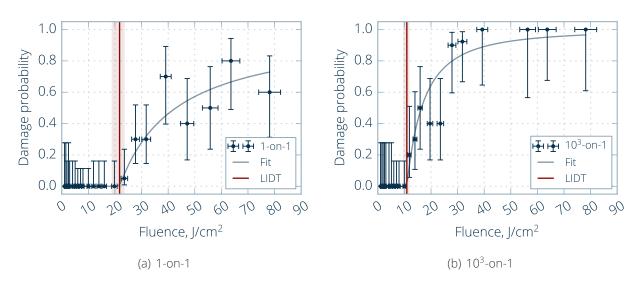


Figure 3. Damage probability plots.

- Sample Page 5 / 7

TYPICAL DAMAGE MORPHOLOGY (OFFLINE DETECTION)

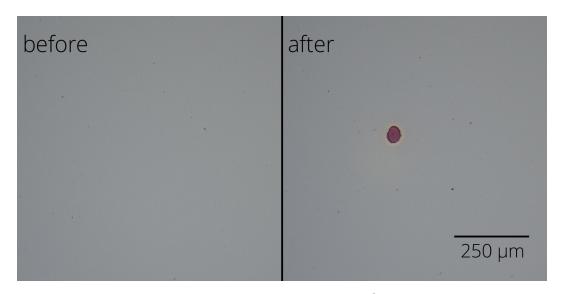


Figure 4. Typical damage morphology: fluence 11.9 J/cm², damage after 640 pulse(s).

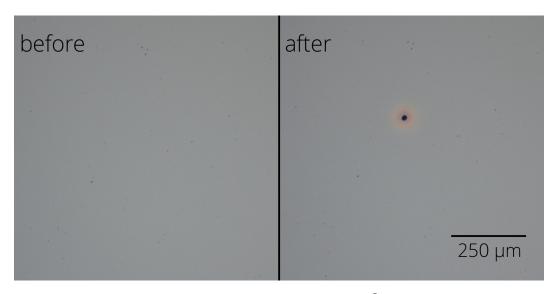


Figure 5. Typical damage morphology: fluence 23.6 J/cm², damage after 88 pulse(s).

- Sample Page 6 / 7

DAMAGE PROBABILITY (ONLINE DETECTION)

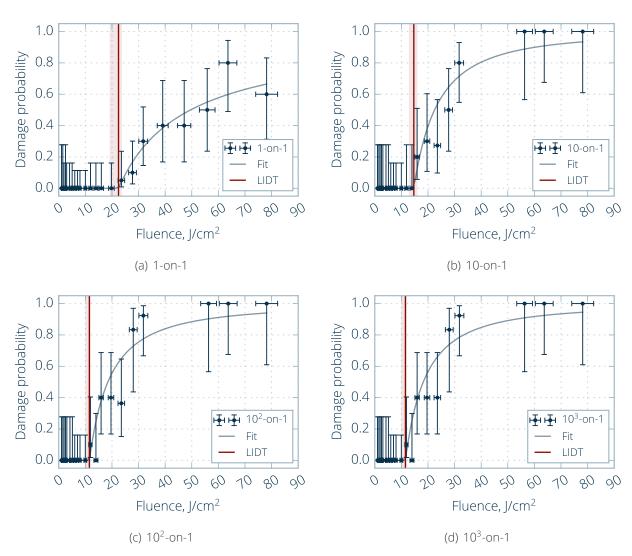


Figure 6. Damage probability plots.

– Sample Page 7 / 7